
Iterator Adaptor

Author: David Abrahams, Jeremy Siek, Thomas Witt
Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
Organization: Boost Consulting, Indiana University Open Systems Lab, University of

Hanover Institute for Transport Railway Operation and Construction
Date: 2004-11-01
Copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.

abstract:

Each specialization of the iterator_adaptor class template is derived from a specialization of
iterator_facade. The core interface functions expected by iterator_facade are implemented in
terms of the iterator_adaptor’s Base template parameter. A class derived from iterator_adaptor
typically redefines some of the core interface functions to adapt the behavior of the Base type. Whether
the derived class models any of the standard iterator concepts depends on the operations supported
by the Base type and which core interface functions of iterator_facade are redefined in the Derived
class.

Table of Contents

Overview

Reference

iterator_adaptor requirements

iterator_adaptor base class parameters

iterator_adaptor public operations

iterator_adaptor protected member functions

iterator_adaptor private member functions

Tutorial Example

Overview

The iterator_adaptor class template adapts some Base [1] type to create a new iterator. Instanti-
ations of iterator_adaptor are derived from a corresponding instantiation of iterator_facade and
implement the core behaviors in terms of the Base type. In essence, iterator_adaptor merely forwards
all operations to an instance of the Base type, which it stores as a member.

[1] The term“Base”here does not refer to a base class and is not meant to imply the use of derivation. We
have followed the lead of the standard library, which provides a base() function to access the underlying
iterator object of a reverse_iterator adaptor.

1

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@ive.uni-hannover.de
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.ive.uni-hannover.de


The user of iterator_adaptor creates a class derived from an instantiation of iterator_adaptor
and then selectively redefines some of the core member functions described in the iterator_facade
core requirements table. The Base type need not meet the full requirements for an iterator; it need
only support the operations used by the core interface functions of iterator_adaptor that have not
been redefined in the user’s derived class.

Several of the template parameters of iterator_adaptor default to use_default. This allows
the user to make use of a default parameter even when she wants to specify a parameter later in the
parameter list. Also, the defaults for the corresponding associated types are somewhat complicated,
so metaprogramming is required to compute them, and use_default can help to simplify the imple-
mentation. Finally, the identity of the use_default type is not left unspecified because specification
helps to highlight that the Reference template parameter may not always be identical to the iterator’s
reference type, and will keep users from making mistakes based on that assumption.

Reference

template <
class Derived

, class Base
, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default

>
class iterator_adaptor
: public iterator_facade<Derived, V’, C’, R’, D’ > // see details

{
friend class iterator_core_access;

public:
iterator_adaptor();
explicit iterator_adaptor(Base iter);
Base const& base() const;

protected:
typedef iterator_adaptor iterator_adaptor_;
Base const& base_reference() const;
Base& base_reference();

private: // Core iterator interface for iterator_facade.
typename iterator_adaptor::reference dereference() const;

template <
class OtherDerived, class OtherItera-

tor, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherItera-

tor, V, C, R, D> const& x) const;

void advance(typename iterator_adaptor::difference_type n);
void increment();
void decrement();

template <
class OtherDerived, class OtherItera-

tor, class V, class C, class R, class D

2



>
typename iterator_adaptor::difference_type distance_to(

iterator_adaptor<OtherDerived, OtherItera-
tor, V, C, R, D> const& y) const;

private:
Base m_iterator; // exposition only

};

iterator_adaptor requirements

static_cast<Derived*>(iterator_adaptor*) shall be well-formed. The Base argument shall be
Assignable and Copy Constructible.

iterator_adaptor base class parameters

The V’, C’, R’, and D’ parameters of the iterator_facade used as a base class in the summary of
iterator_adaptor above are defined as follows:

V’ = if (Value is use_default)
return iterator_traits<Base>::value_type

else
return Value

C’ = if (CategoryOrTraversal is use_default)
return iterator_traversal<Base>::type

else
return CategoryOrTraversal

R’ = if (Reference is use_default)
if (Value is use_default)

return iterator_traits<Base>::reference
else

return Value&
else

return Reference

D’ = if (Difference is use_default)
return iterator_traits<Base>::difference_type

else
return Difference

iterator_adaptor public operations

iterator_adaptor();

Requires: The Base type must be Default Constructible.
Returns: An instance of iterator_adaptor with m_iterator default constructed.

explicit iterator_adaptor(Base iter);

Returns: An instance of iterator_adaptor with m_iterator copy constructed from iter.

Base const& base() const;

Returns: m_iterator

3



iterator_adaptor protected member functions

Base const& base_reference() const;

Returns: A const reference to m_iterator.

Base& base_reference();

Returns: A non-const reference to m_iterator.

iterator_adaptor private member functions

typename iterator_adaptor::reference dereference() const;

Returns: *m_iterator

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

Returns: m_iterator == x.base()

void advance(typename iterator_adaptor::difference_type n);

Effects: m_iterator += n;

void increment();

Effects: ++m_iterator;

void decrement();

Effects: --m_iterator;

template <
class OtherDerived, class OtherItera-

tor, class V, class C, class R, class D
>
typename iterator_adaptor::difference_type distance_to(

iterator_adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

Returns: y.base() - m_iterator

Tutorial Example

In this section we’ll further refine the node_iter class template we developed in the iterator_facade
tutorial. If you haven’t already read that material, you should go back now and check it out because
we’re going to pick up right where it left off.

node_base* really is an iterator
It’s not really a very interesting iterator, since node_base is an abstract class: a pointer to a
node_base just points at some base subobject of an instance of some other class, and incrementing
a node_base* moves it past this base subobject to who-knows-where? The most we can do with
that incremented position is to compare another node_base* to it. In other words, the original
iterator traverses a one-element array.

4

file:iterator_facade.html#tutorial-example
file:iterator_facade.html#tutorial-example


You probably didn’t think of it this way, but the node_base* object that underlies node_iterator is
itself an iterator, just like all other pointers. If we examine that pointer closely from an iterator perspec-
tive, we can see that it has much in common with the node_iterator we’re building. First, they share
most of the same associated types (value_type, reference, pointer, and difference_type). Second,
even some of the core functionality is the same: operator* and operator== on the node_iterator
return the result of invoking the same operations on the underlying pointer, via the node_iterator’s
dereference and equal member functions). The only real behavioral difference between node_base*
and node_iterator can be observed when they are incremented: node_iterator follows the m_next
pointer, while node_base* just applies an address offset.

It turns out that the pattern of building an iterator on another iterator-like type (the Base [1] type)
while modifying just a few aspects of the underlying type’s behavior is an extremely common one, and
it’s the pattern addressed by iterator_adaptor. Using iterator_adaptor is very much like using
iterator_facade, but because iterator adaptor tries to mimic as much of the Base type’s behavior as
possible, we neither have to supply a Value argument, nor implement any core behaviors other than
increment. The implementation of node_iter is thus reduced to:

template <class Value>
class node_iter
: public boost::iterator_adaptor<

node_iter<Value> // Derived
, Value* // Base
, boost::use_default // Value
, boost::forward_traversal_tag // CategoryOrTraversal

>
{
private:

struct enabler {}; // a private type avoids misuse

public:
node_iter()
: node_iter::iterator_adaptor_(0) {}

explicit node_iter(Value* p)
: node_iter::iterator_adaptor_(p) {}

template <class OtherValue>
node_iter(

node_iter<OtherValue> const& other
, typename boost::enable_if<

boost::is_convertible<OtherValue*,Value*>
, enabler

>::type = enabler()
)
: node_iter::iterator_adaptor_(other.base()) {}

private:
friend class boost::iterator_core_access;
void increment() { this->base_reference() = this->base()->next(); }

};

Note the use of node_iter::iterator_adaptor_ here: because iterator_adaptor defines a nested
iterator_adaptor_ type that refers to itself, that gives us a convenient way to refer to the complicated
base class type of node_iter<Value>. [Note: this technique is known not to work with Borland C++
5.6.4 and Metrowerks CodeWarrior versions prior to 9.0]

5

file:iterator_facade.html#implementing-the-core-operations


You can see an example program that exercises this version of the node iterators here.
In the case of node_iter, it’s not very compelling to pass boost::use_default as iterator_adaptor’s

Value argument; we could have just passed node_iter’s Value along to iterator_adaptor, and that’d
even be shorter! Most iterator class templates built with iterator_adaptor are parameterized on
another iterator type, rather than on its value_type. For example, boost::reverse_iterator takes
an iterator type argument and reverses its direction of traversal, since the original iterator and the
reversed one have all the same associated types, iterator_adaptor’s delegation of default types to its
Base saves the implementor of boost::reverse_iterator from writing:

std::iterator_traits<Iterator>::some-associated-type

at least four times.
We urge you to review the documentation and implementations of reverse_iterator and the

other Boost specialized iterator adaptors to get an idea of the sorts of things you can do with itera-
tor_adaptor. In particular, have a look at transform_iterator, which is perhaps the most straight-
forward adaptor, and also counting_iterator, which demonstrates that iterator_adaptor’s Base
type needn’t be an iterator.

6

file:../example/node_iterator3.cpp
file:reverse_iterator.html
file:index.html#specialized-adaptors
file:transform_iterator.html
file:counting_iterator.html

	Table of Contents
	Overview
	Reference
	iterator_adaptor requirements
	iterator_adaptor base class parameters
	iterator_adaptor public operations
	iterator_adaptor protected member functions
	iterator_adaptor private member functions

	Tutorial Example

